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Determination of anisotropic elastic moduli

of Zr-2.5Nb CANDU pressure tube materials
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In order to determine the elastic stiffness of Zr-2.5Nb CANDU pressure tube materials, the
resonance frequencies of a rectangular parallelepiped specimen were measured and
compared with the calculated resonance frequencies based on the input data of estimated
stiffness of a polycrystalline Zr-2.5Nb specimen, dimensions and density. The estimated
elastic stiffness was determined using its orientation distribution function measured by
x-ray diffraction and the reported elastic stiffness of a zirconium single crystal. Through
comparison of calculated frequencies with that measured by resonance ultrasound
spectroscopy, accurate elastic stiffness has been determined by iteration and convergence
processes. C© 2000 Kluwer Academic Publishers

1. Introduction
The elastic moduli of materials are important in en-
gineering, such as mechanical design, fracture analy-
sis, life-time estimation of structures. To determine the
elastic moduli it requires lots of samples with differ-
ent compositions, fabrication processes and heat treat-
ments. For anisotropic materials, such as composite
materials or textured materials, it is more difficult to
determine the elastic moduli, because of its anisotropic
properties.

The resonant ultrasound spectroscopy (RUS) is used
to determine the elastic stiffness for various shapes
of samples, i.e. spherical, cylindrical, or rectangular
parallelepiped. Theoretically maximum 21 tensor ele-
ments of elastic stiffness for triclinic crystal (the lowest-
symmetry crystal) can be determined with one speci-
men. However, for such a low-symmetry crystal, it is
difficult to assimilate properties relating to stress waves
and elasticity [1]. Practically RUS can determine 9 ten-
sor elements for orthorhombic symmetry as well as
higher-symmetry, such as isotropic, cubic, hexagonal,
tetragonal symmetry.

One of the key elements in RUS is to determine the
symmetry and the initial estimate of elastic stiffness
in advance. The initial estimate should be close to the
true value and can be obtained from literatures, experi-
ence, other measurements, etc. The test sample should
be machined accurately. The calculated resonance fre-
quencies and modes should be matched to the measured
values by RUS and the elastic stiffness can be converged
by comparison and iteration.

Zr-2.5Nb alloy for the pressure tubes in CANDU
(CANadian Deuterium Uranium) reactors have devel-
oped a strong texture due to the limited slip system dur-
ing extrusion process, leading to anisotropic properties.
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The material properties strongly depend on the orienta-
tion distributions of grains, which result in a directional
anisotropy of elastic stiffness, thermal expansion coeffi-
cients, etc. To characterize the degree of anisotropy, it is
necessary to correctly determine the anisotropic elastic
moduli depending on the direction of the tube samples.
The anisotropy of the Zr-2.5Nb alloy could be treated
as orthorhombic symmetry, consist of three principal
coordinates such as radial, transverse, and longitudinal
direction.

Initial approximated elastic stiffness has been esti-
mated by orientation distribution function (ODF) from
the x-ray pole figure data and the elastic stiffness of
single crystal zirconium. Based on the initial estimates,
anisotropic elastic stiffness of the Zr-2.5Nb alloy has
been determined by RUS. Present work is concerned
with previous measurements by other methods.

2. ODF and anisotropic elastic stiffness
Polycrystalline Zr-2.5Nb pressure tube materials is a
hexagonal closed packed (hcp) structure and is tex-
tured along the circumferential direction. The elastic
stiffness on the tubular sample coordinate (axial, radial,
and circumferential directions) could be expressed as
an orthorhombic symmetry and represented as:

ci j =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


(1)

0022–2461 C© 2000 Kluwer Academic Publishers 1195



Macroscopic properties of a sample can be obtained by
the integration of the properties,E(g) depending upon
the orientation of an individual grain,g and weighting
factor, i.e. ODF of grains,f(g) along the total orientation
space [2]:

Ē =
∫

E(g)× f (g) dg (2)

In order to represent the elastic stiffness tensor of
rank= 4 to 6× 6 matrix form, the usual four-to-two
contraction scheme is adopted, such as 11→ 1, 22→ 2,
33→ 3, 23→ 4, 13→ 5, and 12→ 6.

The anisotropy of the polycrystalline with textured
structure can be calculated as an average of material
properties of each grain, if interactions between grains
are negligible. The averaged elastic stiffness along the
sample coordinate can be estimated by knowing elastic
stiffness of single crystal and orientation distribution
of grains from the pole figure data by x-ray or neutron
diffraction. Based on the pole figure data, the ODF can
be calculated by generalized spherical harmonics and
series expansion coefficients [3]:

ω(ξ, φ, ϕ) =
4∑

l = 0

4∑
m= l

4∑
n=−l

WlmnZlmn e−imφe−inϕ,

(3)

whereZlmn is the generalized Legendre polynomial de-
fined by Roe [4],Wlmn is the series expansion coeffi-
cient adopted from by Roe, or notation by Bunge [5].
When a tensor rank withp is averaged,Wlmn includes
the elements ofl ≤ p, which implies a maximum num-
ber tensor element,l , m, andn is 4 for the case of elastic
stiffness tensor.Wlmn andZlmn for orthorhombic sym-
metry have been calculated by Morris [6].

In order to explain actual elastic stiffness, various
models or approximations have been suggested. Based
on the orientation distribution by a sample coordi-
nate, the elastic stiffness can be estimated by either
Voigt’s approximation, Reuss approximation, or self-
consistent iteration method, etc. Voigt’s approximation
assumes that the total stress is a sum of the individ-
ual stresses on each grain, whereas in the Reuss ap-
proximation a sum of the individual strains on each
grain is assumed. Both approximations represent two
extreme cases and can be regarded as upper and lower
bounds [7]:

ci jkl = 1

8π2

∫
ci jkl (Ä) dÄ (Voigt’s approximation),

(4)

Si jkl = 1

8π2

∫
Si jkl (Ä) dÄ (Reuss approximation),

(5)

whereci jkl and ci jkl are the averaged and individual
elastic stiffness,Si jkl and Si jkl are the averaged and
individual elastic compliance,Ä is Euler angle,θ, φ, ϕ
and

∫
dÄ= 8π2.

3. Elastic stiffness by resonant ultrasound
spectroscopy (RUS)

Free vibration or resonance is sensitive to the micro-
scopic and macroscopic properties of the materials. Be-

cause RUS can determine accurate elastic stiffness and
ultrasonic attenuation, it can be applied to materials
characterization, non-destructive testing, etc. [8] Ex-
act analytical solution on the free vibration problem to
determine resonance frequencies is not known or avail-
ablea priori. Only approximated solutions are avail-
able by numerical analysis, such as the finite element
method or minimization of energy. The fundamental
theory of resonance was developed by Maynard [9],
and theoretical calculations and experiments for the
resonance of an elastically isotropic rectangular paral-
lelepiped specimen have been made by Holland [10]
and Demarest [11]. Those results have been gener-
alized by Ohno [12] and comprehensive applications
to the solid-state physic have been accomplished by
Migliori [13].

The eigenvector or eigenfrequency of vibrating solids
can be calculated by a theory of the minimization of en-
ergy, i.e. a mechanical Lagrangian of elastic solids with
some approximations. In classical mechanics, the solu-
tion of Lagrangian for free vibration can be expressed
as the elastic wave equation,

ρω2ui +
∑
j,k,l

ci jkl
∂2uk

∂xj ∂xl
= 0. (6)

This equation is solved subject to the vanishing of the
i -th component of the surface traction vector,∑

j,k,l

Enj ci jkl =
∑

j

Enjσi j = 0, (7)

whereρ is density,ω is frequency,ui is thei -th com-
ponent of the displacement vector,ci jkl is elastic mod-
ulus tensor,nj is unit vector normal to the surface, and
σi j is stress tensor. While the direct (forward) problem
(calculation of resonance frequencies based on sam-
ple description) is challenging in its own right, the in-
verse problem (calculation of elastic constants from
measured frequencies) is considerably more difficult.
A combination ofui satisfying those conditions is dis-
placement corresponding to the normal mode free vi-
bration frequency. Based on this fact, an algorithm for
the calculation of frequencies corresponding to the min-
imization of energy using Rayleigh-Ritz method have
been developed by Demarest [11]. The resonance fre-
quencies can be calculated for the sample with known
density, dimension, orientation, and elastic stiffness.
Actually, because the solution of the inverse problem
is not simple and no exact solution is available, non-
linear optimization procedures are the best option. A
computer code has been developed based on a fast and
efficient solution of the direct problem, which is then
used in an iterative Levenburg-Marquardt scheme to
solve the inverse problem with the figure of merit [14].

4. Experimental
4.1. Specimen
Nuclear grade Zr-2.5Nb CANDU pressure tube materi-
als are used as specimen. As shown in Fig. 1, the grains
are elongated along the circumferential direction. Fig. 2
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Figure 1 Optical microstructures of CANDU pressure tube at a) the L
section normal to a tangential direction, b) the T section normal to a
longitudinal direction, and c) the R section normal to a radial direction.

shows the pole figures of (00.2), (10.0), and (10.1) for
the Zr-2.5Nb alloy. This material exhibits strong tex-
tured structure due to extrusion processes.

4.2. Calculation of the initial estimate of
anisotropic elastic stiffness

The ODF of the Zr-2.5Nb alloy has been calculated us-
ing a computer program, “popLA”, by the Los Alamos
National Laboratory [15]. The raw data file of x-ray Figure 2 Pole figures for Zr-2.5Nb pressure tube materials.
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TABLE I Elastic stiffness of single crystal Zirconium (hcp)

c11= c22 c33 c44 c66= 1
2(c11− c12) c13 c12

1.434 1.648 0.320 0.353 0.653 0.728

Notation of hcp single crystal: 1(=2)= a-axis, 3= c-axis.
unit: 1011 N/m2.

TABLE I I Anisotropic elastic stiffness of Zr-2.5Nb pressure tube
materials by orientation distribution function (ODF)

c11 c22 c33 c23 c13 c12 c44 c55 c66

Voigt’s 1.449 1.490 1.446 0.687 0.699 0.713 0.340 0.343 0.375
approx.

Reuss 1.437 1.473 1.440 0.691 0.702 0.720 0.338 0.341 0.365
approx.

Self- 1.443 1.482 1.443 0.689 0.700 0.717 0.339 0.342 0.370
consistent

Notation of sample orientation: 1= RD (Radial Direction), 2= TD
(Transverse Direction), 3= LD (Longitudinal Direction).
unit: 1011 N/m2.

pole figure was converted to the ASCII format as re-
quired by the program. The angles of orientation distri-
bution are represented by one of the notations by Euler,
Roe-Matties, or Bunge [15].

With the elastic stiffness of single crystal zirconium
[16], shown in Table I, and the weight factor of individ-
ual grain obtained from the ODF, averaged elastic stiff-
ness of the polycrystalline Zr-2.5Nb alloy have been
obtained using Voigt’s approximation, Reuss approxi-
mation, or self-consistent method by iteration. The sub-
scripts in Table I are referred to the crystallite coordi-
nate, i.e. 1(=2)=a-axis, 3= c-axis in the hcp single
crystal orientation.

Initial estimates of the elastic stiffness of the poly-
crystalline Zr-2.5Nb alloy are shown in Table II. The
subscripts are referred to the tubular sample coordinate,
i.e. 1= radial, 2= transverse, and 3= longitudinal di-
rection. The anisotropic nature along axial, radial,
and circumferential directions can make it as the or-
thorhombic symmetry, which requires 9 independent
elastic stiffness.

4.3. Determination of anisotropic elastic
stiffness by RUS

Rectangular parallelepiped Zr-2.5Nb samples were ma-
chined accurately, with dimensions in a range of 2.5–
5.5 mm. The sample is inserted between two ultrasonic
transducers, one is transmitter and the other is a re-
ceiver, and minimal force was applied in order to hold
the specimen at the corners as allow free vibration of the
specimen (see Fig. 3). Because Voigt’s approximation
and Reuss approximation represent two extreme cases,
the elastic stiffness by self-consistent method by itera-
tion was adopted for the initial estimate of elastic stiff-
ness for the RUS. Calculated frequencies by an input
of dimensions, density, symmetry, and initial estimate
of elastic stiffness were corresponded to the measured
frequencies and vibration modes. Accurate values of
elastic stiffness have been obtained by comparison and
iteration algorithm.

Figure 3 Block diagram of resonant ultrasound spectroscopy (RUS).

Fig. 4 shows a typical resonance ultrasound spectrum
of the Zr-2.5Nb alloy. For the case of a specimen di-
mensions of 3.582 mm×3.486 mm×5.318 mm, initial
30 resonance frequencies are in the range of 180–600
kHz. Generally if the RMS error is less than 0.2%, the
results could be regarded as reliable and accurate.

5. Results and discussion
Table III shows anisotropic elastic stiffness of the Zr-
2.5Nb alloy by RUS. Table IV shows the Young’s mod-
uli, which are the inverse of the elastic compliance,
Eii = 1/Sii .

Based on the pole figures for (0002) in Fig. 2,f -
coefficients or Kearn’s factors, which represent the de-
gree of orientations along thec-axis, are calculated as
fT= 0.6, fR= 0.33, fL = 0.07, where the subscripts
denote T= transverse, R= radial, and L= longitudinal
direction [17, 18]. This fact implies that approximately
60% of (0002) pole are aligned along the transverse
direction (or circumferential direction), 33% along the
radial direction, and 7% along the axial direction. Be-
cause the elastic stiffness along thec-axis in the single
crystal zirconium is greater than along thea-axis, i.e.
c33> c11(= c22) (subscripts follows single crystal co-
ordinate; 1(= 2)=a-axis, 3= c-axis in hcp crystalline
structure), the elastic stiffness along a direction of
higher f -coefficient should be greater than the other di-
rections. Either, the elastic stiffness estimated by ODF

TABLE I I I Anisotropic elastic stiffness of Zr-2.5Nb pressure tube
materials by resonant ultrasound spectroscopy (RUS)

c11 c22 c33 c23 c13 c12 c44 c55 c66

1.4708 1.5269 1.4533 0.7191 0.7538 0.7446 0.3381 0.3425 0.3696

Notation of sample orientation: 1= RD (Radial Direction), 2= TD
(Transverse Direction), 3= LD (Longitudinal Direction).
unit: 1011 N/m2.

TABLE IV Anisotropic Elastic Moduli of Zr-2.5Nb pressure tube
materials converted from the elastic compliance

Bulk
Young’s moduli Shear moduli modulus

E11 E22 E33 G44 G55 G66 K
96.18 104.32 96.79 33.81 34.59 36.96 98.70

Notation of sample orientation: 1= RD (Radial Direction), 2= TD
(Transverse Direction), 3= LD (Longitudinal Direction).
unit: 1011 N/m2.
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Figure 4 Typical resonance spectrum of rectangular parallelepiped Zr-2.5Nb pressure tube materials.

or RUS results inc22> c11> c33 (subscripts follows
sample coordinate; 1= radial direction, 2= transverse
direction, 3= longitudinal direction), which indicates
the highest elastic stiffness is along the transverse di-
rection and the lowest along the longitudinal direction,
which is in accord with the expectation.

There are little differences between the elastic stiff-
ness by ODF and by RUS, shown in Tables II and III.
The elastic stiffness estimated by ODF is based on the
orientation distribution of an individual crystallite. All
models for macroscopic (specimen) properties from
microscopic (crystallite) properties, such as Voight’s
approximation, or Reuss approximation share common
assumptions: i) absence of voids, non-homogeneity, ii)
cohesion of crystallites occur through very thin grain
boundary regions that are deformed relative to the
crystal interiors, iii) randomly orientated grains, and
iv) grains large enough so that interfaces remain non-
important [7]. In addition, microscopic variations, such
as size and shape of crystallites, the effect of alloying
elements, the existence ofβ-phase, dislocation density
and distribution, are not reflected in the estimation by
ODF. Therefore the elastic stiffness determined by RUS
with initial estimates by ODF could be closer to the true
value.

One of the important factors in determining elastic
stiffness by RUS is the initial input of the elastic stiff-
ness be close enough to the true values in order to con-
verge during iteration processes. In an early study, we
attempted the averaging method byf -coefficients from
x-ray pole figure data. Using those values as the initial
input for RUS calculations, relatively high RMS errors
between calculated and measured frequencies indicated
the RUS measurement was not reliable. It seems that
f -coefficients, which implies simple fractions of crys-
tallites along the 3 major axes, could not be a proper
approximation to obtain 9 independent elastic stiffness
for the samples. However, using the initial estimate by
ODF, RMS error less than 0.2% indicates the method
is reliable and accurate.

It is not easy to get elastic modulus along radial
or transverse direction in the tubular shaped sample
by conventional methods. It has been reported that
the approximated elastic modulus forα-zirconium is
98.6 GPa [19]. Ashida [20] reported that a relation of
Young’s modulus to temperature asE=−0.0656T +
115.1 by measurement of resonance frequencies in the
bending and torsion test, which comes out the Young’s
modulus of 95.4 GPa at room temperature. Northwood
et al. [21] reported that Young’s moduli of Zr-2.5Nb al-
loy areEL = 97.0 GPa,ET= 95.2 GPa,G= 35.9 GPa.
All these reported values are restricted to a certain direc-
tion or assumption of isotropic properties. However, as
shown in Table IV, RUS can determine all the elements
of elastic stiffness, including Young’s moduli along the
radial, transverse, and radial directions as well as shear
moduli and bulk modulus at once. Because of the dif-
ferences in materials, especially in anisotropic proper-
ties, small differences of the elastic moduli are quite
natural.

6. Summary
1. Anisotropic elastic stiffness of Zr-2.5Nb pressure
tube materials has been determined by RUS. The initial
estimate for RUS has been obtained from consideration
of ODF by x-ray pole figures and elastic stiffness of
single crystal zirconium.

2. RMS error less than 0.2% in RUS indicates that
the measurement is reliable and accurate.

3. There is a little difference between the elastic stiff-
ness by ODF and RUS. It implies that the values by RUS
are closer to the true values.
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